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Deformation twinning is one of the major deformation mechanisms in crystals, which plays an important
role in determining the mechanical properties of metals and alloys. One of the important issues to understand
twinning mechanisms is the determination of the deformation path. However, due to a lack of theoretical tools,
a fundamental relationship between symmetry breaking and the deformation path has not been established in
materials science, which conceals the physical origin of deformation twinning. Utilizing a graph approach
for deformation pathways, we show that twinning modes in hexagonal close-packed (hcp) titanium and
zirconium are dictated by both the symmetry of hcp and the symmetry breaking associated with the bcc to hcp
transformation. Our work not only opens another avenue to investigate the symmetry and symmetry breaking in
hcp crystals, but also provides insight into the physical origin of crystalline defects.
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I. INTRODUCTION

Deformation twinning is one of the most important de-
formation mechanisms in crystals, which has been widely
identified in a variety of crystals, including typical face-
centered-cubic (fcc), body-centered-cubic (bcc), and hexag-
onal close-packed (hcp) metals/alloys as well as ordered
intermetallic compounds [1–4]. Deformation twinning is es-
pecially important in crystals of lower symmetry (e.g., hcp, or-
thorhombic) where the five independent slip systems required
for a general deformation are unavailable [5,6], and becomes
the dominant deformation mode as temperature is lowered
or strain rate is increased [1,4]. From both scientific and
engineering points of view, the determination of the twinning
mode is the foundation for the calculations of twinning strain
and critical shear stress, which are critical material parameters
for the prediction of the mechanical behavior of metals and
alloys [1].

In the literature, a number of mathematical parameters have
been introduced to unambiguously describe a twinning mode
[1,7], including (i) twin plane, (ii) twinning shear vector, and
(iii) misorientation between two twin-related domains. Note
the relation among the three parameters. From a theoretical
point of view, parameters (i) and (ii) are sufficient to define
a twinning mode unambiguously, while parameters (iii) can
be determined by the given (i) and (ii). From an experimental
point of view, (i) and (iii) can be directly measured through
transmission electron microscopy and electron backscatter
diffraction techniques, while parameter (ii) is difficult to di-
rectly identify unless an in situ atomic resolution observation
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is available. However, a twinning mode cannot be uniquely
determined through (i) and (iii). As a typical example, we
consider a �3 twin on a {112} plane in bcc. Note that {112}
is the twin plane (i), while �3 is the misorientation (iii),
i.e., a 60° rotation about 〈111〉 (or a 70.5° rotation about
〈110〉). In the literature, two different twinning paths have
been proposed, both of which lead to �3 twin boundaries
on {112} [1]. In Fig. 1, the paper plane is (011̄) in the bcc
index. Blue and orange atoms are on different (011̄) planes,
which indicates an ABABAB … stacking sequence along the
[011̄] direction. An initial undeformed rectangular domain is
colored red. After the twinning, one half of the domain (lower
right triangle) transforms to twin (colored green), with a (211)
twin plane. As reported in the literature [1], there are two
twinning mechanisms providing exactly the same twin plane
and misorientation (shown in Fig. 1). The two mechanisms
have opposite shear vectors, with their conjugate twin planes
being {112} and {332}, respectively [1]. In principle, both
twinning modes could exist in reality, i.e., it is possible that
they exist in different bcc metals such as Mo and Ti. However,
they cannot be distinguished based on the experimental results
of (i) and (iii) alone.

It is a general crystallographic phenomenon that different
twinning paths can lead to identical twin boundaries and
misorientation, which also exists in hcp crystals. For example,
at least two different twinning paths have proposed in the
literature for the {112̄2} twin, with different shear vectors
and different conjugate twin planes [1,8–10], and it is still
a controversial issue to determine the twinning mechanism
for the {112̄2} twin. Because of a large number of possible
twinning modes through different combinations of atomic
shears and shuffles [1,8–14], such an ambiguity exists for
most of the typical twin modes in hcp. As will be shown in
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FIG. 1. The change in atomic structure for two different defor-
mation twinning mechanisms that leads to the same twin plane and
misorientation in bcc. The shear vectors (indicated by black arrows)
are opposite for the two twinning modes. (Viewing direction: [011̄]
in bcc.)

our results, the deformation paths for {101̄1}, {101̄3}, and
{112̄1} twins also require further examination due to such
an ambiguity. In terms of the symmetry of hcp alone, two
twinning paths leading to the same twin plane and misorienta-
tion are both theoretically reasonable. However, deformation
twinning is a symmetry-breaking process [15,16], in which
a number of symmetry operations in the parent hcp state
are lost (then restored in another way in the product hcp
state). It has not been well recognized that the structure of a
deformation twin is related to the broken symmetry associated
with the deformation process, which is parallel to the nature
of topological defects dictated by broken symmetry in other
physical systems [16–18].

In this Rapid Communication, we employ a pathway graph
approach to investigate the broken symmetry associated with
the deformation twinning process in Ti and Zr systems. Sym-
metry and pathway analyses provide additional information
to reduce the number of possible twinning modes, and our
theoretical predictions agree with experimental observations.
In particular, we demonstrate that the conjugate twinning
modes of {112̄2}/{112̄6} are dictated by the broken symmetry,
which is another extension twinning mode. Another twinning
mode on {112̄1} has been predicted, which is a contraction
twin rather than an extension twin. The determination of
the twinning path from broken symmetry provides insight
to understand the deformation mechanism in Ti and Zr met-
als/alloys, which also challenges the classical twinning modes
suggested in the literature. The graph approach adopted in this
Rapid Communication generally applies to all crystal systems,
which could be utilized to systematically predict the twinning
mechanisms in other metals and alloys.

II. SYMMETRY AND PATHWAY ANALYSES OF hcp
TITANIUM AND ZIRCONIUM

Ti and Zr are typical metals that undergo a structural phase
transformation between the bcc and hcp phases, which implies

FIG. 2. The change in crystal structure during the hcp → bcc
transformation. From a single hcp state (H1), three equivalent bcc
states (B1, B2, and B3) can be generated by the transformation
through Burgers correspondence. (Viewing direction: [011̄] in bcc
and [0001] in hcp.)

a prototype correlation between the broken symmetry and
phase transformation path (i.e., the Burgers path between
bcc and hcp) [19]. The space group of bcc is Im3̄m, which
corresponds to a point group of m3̄m with 48 symmetry
operations. The space group of hcp is P63mmc. However, the
site symmetry for the occupied Wyckoff position is 6̄m2, a
group with 12 symmetry operations. The preserved symmetry
during the bcc → hcp transformation is the intersection group
of m3̄m and 6̄m2 through the Burgers path, which is mm2
with four symmetry operations. As a result, there are 48/4 =
12 equivalent pathways for the bcc → hcp transformation,
while there are 12/4 = 3 equivalent pathways for the hcp →
bcc transformation (the atomic structure is shown in Fig. 2),
caused by the symmetry breaking [20–22]. The 12 equivalent
pathways from bcc → hcp can be easily understood from
the symmetry of bcc. Because there are six equivalent {110}B

planes in bcc, the bcc lattice can be distorted uniformly into
a hexagonal lattice in six equivalent ways, i.e., each {110}B

becomes (0001)H , combined with two possible additional
shuffles along 〈110〉B to construct an hcp structure. For sim-
plicity, two hcp states resulting from opposite shuffles will
not be distinguished, since they produce the same crystal
orientation and the same amount of strain.

Both bcc and hcp are important high-symmetry structural
states in the deformation space (i.e., strain space), which
dictate the broken symmetries associated with multiple de-
formation paths. The symmetry groups of bcc and hcp do
not have a group-subgroup relation, and they cannot be in-
cluded in a common finite group. In other words, a crystalline
state including both fourfold rotational symmetry and sixfold
rotational symmetry is theoretically impossible. Here, we
adopt the phase transition graph (PTG) approach to describe
interconnected deformation pathways in crystals [23,24]. In a
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FIG. 3. Phase transition graph for the bcc-hcp transformation: (a)
Local structures: Each B vertex is connected with six H vertices,
while each H vertex is connected with three B vertices; (b) the global
structure generated by combining the local structures.

PTG, each vertex (node) corresponds to a structural state in
the deformation space, while each edge (line) between two
vertices corresponds to a deformation pathway connecting
two structural states.

The PTG for the bcc-hcp transformation system is shown
in Fig. 3, in which bcc and hcp structural states are described
by blue and red vertices, respectively. As suggested by the
above analyses of the broken symmetries during the bcc →
hcp and the hcp → bcc transformations, each B vertex is
connected with six H vertices (12 is reduced to 6 by ignoring
opposite shuffle), while each H vertex is connected with three
B vertices [Fig. 3(a)]. The bcc and hcp states are denoted by B
and H, while numbers are used to distinguish different struc-
tural states in the same phase (e.g., H1-1 and H1-2 describe
different hcp states). As a result, when several transformation
cycles occur, an interconnected pathway network is expected
[Fig. 3(b)]. In particular, the local connectivity between H1
and B1/B2/B3 directly corresponds to the lattice distortion
shown in Fig. 2. Because of the non-group-subgroup relation
between bcc and hcp, this pathway network is infinite. In
practice, we only plot part of the infinite graph. Here, we adopt
a double-index system to denote H vertices in Fig. 2(b) based
on their directly connected B vertices. For example, we denote
the direct H neighbors of B1 as H1-1 through H1-6. Similarly,
the six H vertices directly connected to B2 are denoted as
H2-1 through H2-6. Since H1 is the common neighbor of B1,
B2, and B3, H1 can be denoted equivalently as H1-1, H2-1,
and H3-1.

III. DEFORMATION TWINNING IN hcp TITANIUM
AND ZIRCONIUM

The PTG shown in Fig. 3 provides an intuitive illustra-
tion of the free-energy landscape in the high-dimensional
deformation space. Because bcc and hcp are high-symmetry
structures, each vertex corresponds to an energy extreme, e.g.,
maximum, minimum, or saddle point [25], while the vertices
in the same type (e.g., hcp) suggest the same energy level.
Note that the relative stabilities of different phases depend
on temperature in Ti and Zr. At high temperatures (i.e., bcc

is stable), bcc vertices correspond to energy minima, while
hcp vertices correspond to maxima or saddle points. At low
temperatures (i.e., hcp is stable), hcp vertices correspond to
minima, while bcc vertices correspond to maxima or saddle
points. In the temperature range for phase transformation, all
bcc and hcp vertices correspond to minima, with one type
as stable and the other as metastable. In particular, when
all hcp vertices correspond to minima and all bcc vertices
correspond to saddle points (i.e., at the vicinity of the critical
temperature T −) [26], the minimum energy path between
two hcp states exactly passes through a bcc saddle. As a
result, the deformation path in hcp is directly related to
hcp → bcc → hcp. When the temperature further decreases,
i.e., lower than the critical temperature (<T −), the bcc saddle
gradually becomes a maximum (i.e., a hill on the energy
surface), so the minimum energy path would be through a
low-symmetry saddle structure (lower symmetry than bcc,
e.g., orthorhombic) bypassing the hill. However, since the
orthorhombic is a subgroup of bcc, the broken symmetry
included in the orthorhombic saddle structure is also included
in bcc. Our analyses of the broken symmetry in bcc still lead
to the same twinning modes when the symmetry group of
the saddle structure is a subgroup of bcc. Such a method
has been utilized to investigate the twinning modes in bcc
titanium in the literature, which shows that both {112}B and
{332}B deformation twin modes are directly related to the
broken symmetry associated with the bcc → hcp → bcc
path [27,28]. In the Supplemental Material, we also illustrate
the method by using a two-dimensional square → hexagon
transformation [29], which is fundamentally similar to the
bcc → hcp transformation in terms of broken symmetry. In
general, the deformation paths in hcp Ti and Zr should be
related to not only the symmetry of hcp but also the symmetry
of bcc, which provides an additional constraint to greatly
reduce the number of possible paths.

By incorporating the above PTG analyses into the twin
plane condition [1,7,30], we can systematically predict the
possible twinning modes in Ti and Zr. For example, we
pick two hcp vertices (e.g., Hi and H j) and determine their
corresponding deformation gradient matrices (e.g., FHi and
FH j),

QFH j − FHi = s(η ⊗ K). (1)

η is the twinning shear direction, and K is twin plane normal.
s is the shear magnitude. Q is a rigid-body rotation matrix,
which captures the misorientation between two twin-related
domains. Equation (1) usually has two conjugate solutions,
as described by K1/η1 and K2/η2. Depending on the ra-
tional/irrational nature of the twin plane index, the two so-
lutions could be both compound twins, or type I and type
II twins, as classified in the literature [1,7]. In this Rapid
Communication, all the twin boundary solutions are obtained
by solving Eq. (1), with different choices of FHi and FH j .
The mathematical procedures to solve Eq. (1) can be found
in the literature [7,31]. The deformation gradient matrices for
all structural states (i.e., all vertices in Fig. 3) are listed in the
Supplemental Material [29].

For convenience, the major twinning modes obtained from
previous theoretical calculations in the literature are listed in
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TABLE I. Twinning modes theoretically predicted in the literature (for hcp titanium).

K1/η1 K2/η2 Shear Extension/
Type No. misorientation misorientation s Contraction

1 (1̄102)/[11̄01] (1̄102̄)/[11̄01̄] 0.175 E
85.0° about [112̄0] 85.0° about [112̄0]

2 (1̄011̄)/[1̄012] (101̄3̄)/[303̄2] 0.098 C
57.2° about [21̄1̄0] 62.8° about [21̄1̄0]

3 (112̄2)/[112̄3̄] (1̄1̄24)/[2̄2̄43̄] 0.218 C
64.4° about [11̄00] 76.9° about [11̄00]

4 (112̄1)/[1̄1̄26] (0001)/[1̄1̄20] 0.630 E
35.0° about [11̄00] 0°

Table I (for hcp Ti) [1,8]. There are four major types of con-
jugate twinning pairs. The first one is {101̄2}/〈101̄1̄〉, which
is the most frequently observed to be a twin in hcp crystals.
The second one is the conjugate pair of {101̄1}/〈101̄2̄〉 and
{101̄3̄}/〈303̄2〉, which is usually considered as the origin of
the observed {101̄1} and {101̄3̄} twins. The third one explains
the observed {112̄2} twin, but there is still a controversial
issue about its conjugate {112̄4̄}. The fourth one is usually
considered as the origin of the observed {112̄1} twin. The
above results are summarized in Christian and Mahajan’s
classical review paper [1].

We choose two hcp structural states in Fig. 3, and use
their deformation gradient matrices in Eq. (1). In particular,
we focus on the twin formation between two hcp vertices
with a path through one bcc vertex (e.g., the path between
H1-1 and H2 through B1), and those with a path through
two bcc vertices (e.g., the path between H1-2 and H2-2
through B1/H1/B2). All predicted twinning modes in hcp Ti
(c/a = 1.587) and Zr (c/a = 1.593) are listed in Tables II and
III, respectively. Most of our results are distinctively different
from the previous ones in terms of twinning shear vectors, but
they coincide in twin plane and misorientation. The general
crystallographic phenomena, different twinning paths lead-
ing to identical twin boundaries and misorientations, exist

in typical {112̄2}, {101̄1}, {101̄3}, and {112̄1} twins in hcp
crystals.

Note that the {101̄2}/〈101̄1̄〉 twinning mode is the only
mode that can be found in both Tables I and II. All other
predictions in Table II are significantly different from those
in Table I. For example, for the {112̄2} twin with a 64.4°
misorientation, our prediction suggests a (1̄1̄26̄)/[112̄1̄] con-
jugate mode, which is different from (1̄1̄24)/[2̄2̄43̄] in the
literature [1]. In fact, a recent experimental observation of a
(1̄1̄26̄) twin does support our prediction, which is also phe-
nomenologically equivalent to a double twinning mechanism
proposed in the literature [9,10]. For the {101̄1} twin with
a 57.2° misorientation, our prediction suggests an irrational
[0.38 1 0.62 0.25] twin shear, which is different from [1̄012]
suggested in the literature [1]. For the {101̄3} twin with a 62.8°
misorientation, our prediction suggests a [0.37 1 0.63 0.09]
twin shear, which is different from [303̄2] suggested in the
literature [1]. For the {112̄1} twin with a 35.0° misorientation,
our prediction suggests a [0.83 0.17 1̄ 0.51] twin shear, which
is different from [1̄1̄26] suggested in the literature [1]. Please
recall the twinning path ambiguity as shown in Fig. 1. In the
literature, experimental observations of twin planes and mis-
orientations in hcp [32,33] cannot uniquely determine a de-
formation path, so they do not provide enough information to

TABLE II. Twinning mode predictions in hcp titanium (E/C stands for extension/contraction twin).

K1/η1 K2/η2 Shear Other
State i State j misorientation misorientation s E/C states i,j

H1 H2 (1̄102)/[11̄01] (1̄102̄)/[11̄01̄] 0.175 E H3/H4
85.0° about [112̄0] 85.0° about [112̄0] H5/H6

H1 H3 (101̄1̄)/[0.38 1 0.62 0.25] (0.24 1̄ 0.76 0.28)/[5̄143] 0.343 C H1/H4
57.2° about [1̄21̄0] 65.3° about [1̄ 2 1̄ 0.60] H1/H5

H1/H6
H1-2 H2-2 (1̄1̄22)/[112̄3] (1̄1̄26̄)/[112̄1̄] 0.152 E

64.4° about [1̄100] 55.8° about [1̄100]
H1-3 H2-4 (1̄21̄1̄)/[0.83 0.17 1̄ 0.51] (0.97 0.66 1.62 1̄)/[57̄23] 0.515 C H1-5/H2-6

35.0° about [1̄010] 54.6° about [1̄ 0 1 0.60]
H1-3 H2-6 (1̄2̄35̄)/[0.26 1̄ 0.74 0.80] (0.16 1 0.84 0.84)/[112̄3] 0.485 C H1-5/H2-4

88.2° about [4̄51̄0] 64.4° about [1̄100]
H1-4 H2-3 (101̄3̄)/[0.37 1 0.63 0.09] (0.24 1̄ 0.76 0.24)/[2̄113] 0.562 E H1-6/H2-5

62.8° about [12̄10] 64.4° about [01̄10]
H1-4 H2-5 (101̄1̄)/[1̄21̄0] (14̄31)/[1̄ 0.36 0.64 0.49] 0.658 E

0° 32.6° about [21̄1̄3]
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TABLE III. Twinning mode predictions in hcp zirconium (E/C stands for extension/contraction twin).

K1/η1 K2/η2 Shear Other
State i State j misorientation misorientation s E/C states i,j

H1 H2 (1̄102)/[11̄01] (1̄102̄)/[11̄01̄] 0.168 E H3/H4
85.2° about [112̄0] 85.0° about [112̄0] H5/H6

H1 H3 (101̄1̄)/[0.37 1 0.63 0.26] (0.23 1̄ 0.77 0.31)/[5̄143] 0.345 C H1/H4
57.1° about [1̄21̄0] 65.5° about [1̄ 2 1̄ 0.59] H1/H5

H1/H6
H1-2 H2-2 (1̄1̄22)/[112̄3] (1̄1̄26̄)/[112̄1̄] 0.145 E

64.2° about [1̄100] 55.9° about [1̄100]
H1-3 H2-4 (1̄21̄1̄)/[0.83 0.17 1̄ 0.52] (0.94 0.65 1.59 1̄)/[57̄23] 0.517 C H1-5/H2-6

34.9° about [1̄010] 54.8° about [1̄ 0 1 0.59]
H1-3 H2-6 (1̄2̄35̄)/[0.25 1̄ 0.75 0.80] (0.15 1 0.85 0.85)/[112̄3] 0.492 C H1-5/H2-4

88.5° about [4̄51̄0] 64.2° about [1̄100]
H1-4 H2-3 (101̄3̄)/[0.36 1 0.64 0.09] (0.23 1̄ 0.77 0.23)/[2̄113] 0.562 E H1-6/H2-5

63.0° about [12̄10] 64.2° about [01̄10]
H1-4 H2-5 (101̄1̄)/[1̄21̄0] (14̄31)/[1̄ 0.36 0.64 0.49] 0.657 E

0° 32.6° about [21̄1̄3]

distinguish our predictions and those in the literature [1].
However, since the twinning strains associated with different
deformation paths are different, they could make distinctive
effects on the c axis (i.e., extension or contraction twin). In
our predictions, {101̄3} and {112̄2} are extension twins, and
{112̄1} is a contraction twin, which are clearly different from
those suggested in the literature [5]. As a consequence, it is
important to identify the extension twin and contraction twin
from different loading conditions in the experiments, which
could provide critical information to determine the twinning
path.

Because the twinning modes predicted in this study origi-
nate from the broken symmetry from bcc to hcp, they could
generally exist in metals with a bcc → hcp transformation,
i.e., a number of metals/alloys in groups 3 and 4 in the periodic
table (such as Sc, Y, Gd, Ti, Zr, Hf, etc.). From a crystal
symmetry point of view, those metals/alloys with the bcc
→ hcp transformation are not distinguished (except different
lattice parameters). In addition, our pathway method can be
generally applied to other materials with structural phase
transformations (e.g., Fe alloys with a fcc/bcc transformation,
Ti alloys with a bcc/hcp transformation, Co alloys with a
fcc/hcp transformation). As demonstrated in the literature, the
deformation twin modes in fcc Fe, bcc Fe, and bcc Ti have
been predicted through the pathway approach [17,28,34,35],
and the results agree with experimental observations.

IV. CONCLUSIONS

By using a pathway graph approach, we demonstrate that
the deformation twinning in hcp Ti and Zr is dictated by
not only the symmetry of hcp, but also the broken symme-
try from bcc to hcp. Our theoretical predictions not only
agree with experimental observations, but also challenge the
classical twinning modes suggested in the literature. Based
on our calculations, we suggest to identify the extension
twin and contraction twin from different loading conditions
in the experiments, which could provide critical information
to determine the twinning path. Our method to determine
the deformation twinning path from broken symmetry will
provide insight to understand the deformation mechanism in
Ti and Zr metals/alloys.
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